Feasibility Studies of Low-mass Mesons Identification for the CBM Project

Radoslaw Karabowicz
Hot Matter Physics Department, Institute of Physics, Jagiellonian University
Krakow’s group in the CBM collaboration:

entered the CBM project on Nov. 15, 2002 and consists of:
Jerzy Cibor, Zbigniew Majka, Pawel Staszel, Pawel Szostak, R. K.

Goals:
- Find expected working conditions of the silicon tracking detector (hit densities, radiation dose)
- Assess the possibility of detection of light vector mesons via e^+e^- decay channel

Tools:
- **UrQMD** event generator (104 central Au+Au events @ 25 GeV/u)
- **Pluto** event generator (106 light vector mesons decays)
- **Geant4** transport code (simulation of the detector)
Compressed Baryonic Matter

CBM experiment and STS
Light vector mesons in central Au+Au collisions at 25 GeV/u

<table>
<thead>
<tr>
<th>PARTICLE</th>
<th>PARTICLES/EVENT</th>
<th>e+e- BR. RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>10</td>
<td>7.15×10^{-5}</td>
</tr>
<tr>
<td>ρ</td>
<td>10</td>
<td>4.48×10^{-5}</td>
</tr>
<tr>
<td>ϕ</td>
<td>1</td>
<td>3.00×10^{-4}</td>
</tr>
</tbody>
</table>

$\omega \rightarrow \pi^0 e^+ e^-$ Dalitz decay channel: 5.90×10^{-4}

Particle multiplicities:

$N_{\text{ALL}} = 1582$
$N_{\text{CH}} = 944$
Signal and background comparison
Signal and background comparison
Signal and Background Comparison
Hit densities

Station 1
hit density:
- total
- primaries
- electrons
- positrons

Station 7
hit density:
- total
- primaries
- electrons
- positrons

P-G meeting
Radoslaw Karabowicz
Warszawa, 24 XI 2003
Collision rate,
radiation Vector

DAMAGE

IN NUMBERS:

- about 10^7 Au+Au collisions per second,
- multiplicity of charged particles will be about 10^3 in central Au+Au collision (on average ~ 250),
- the inner parts of the first silicon tracking station will be exposed to about 10^7 hits per mm2 per second, that is 10^{12} hits/mm2/week,
- radiation damages in the Si detector (displacement of atoms in the crystal lattice) was calculated – for inner parts of the first STS the displacement damage cross section D exceeds 60 MeV·mb in one central event (per week $D \equiv 10^{13}$ MeV·mb)

{A. Vasilescu (INPE Bucharest) and G. Lindstroem (University of Hamburg), displacement damage in silicon, on-line compilation}.
Extraction of the e^+e^- signal from light vector mesons decays

- Triggers

(selection of interesting events, i.e. Those with light vector mesons)

To select the events with mesons decays
Extraction of the e+e− signal from light vector mesons decays

- Triggers
 (selection of interesting events, i.e., those with light vector mesons)

- Cuts
 (rejection of e+e− from other processes)
 - Vertex cut
 - Opening angle cut
 - P_T cut

- All pairs coming from low-mass vector mesons originate in the collision vertex, thus all the particles that do not come from this point can be rejected

- Electron-positron pairs from ω Dalitz decay have relatively small opening angle, so pairs with small opening angle can be rejected

- Pairs from gamma conversion have small transversive momenta, so pairs with small transverse momenta can be rejected
Extraction of the e^+e^- Signal from Light Vector Mesons Decays

10^6 events, trigger Efficiency = 100%, cuts applied

- Triggers
 (Selection of interesting events, i.e. Those with light vector mesons)

- Cuts
 (Rejection of e^+e^- from other processes)
 - Vertex cut
 - Opening angle cut
 - p_T cut

- Combinatorics
 (Extraction of the real signal)

P-G meeting Radoslaw Karabowicz Warszawa, 24 XI 2003
In progress

• Magnetic field + tracking

• Investigation and optimization of different cuts

• Realistic detector – efficiencies, misidentifications