Ageing of microstrip gas chambers: problems and solutions

CERN, CH-1211 Geneva 23, Switzerland

Received 5 March 1996

Abstract
The experimental setup and the procedures used for studying the long-term behaviour of micro-strip gas chambers under sustained irradiation are described in detail. The most significant measurements on ageing obtained in a variety of conditions are reported, and a tentative interpretation of the results is presented. The relevance of these findings for the conception, construction and use of MSGCs trackers in high luminosity LHC detectors is discussed.

1. Introduction

Most measurements with micro-strip gas chambers (MSGCs) exposed to high radiation fluxes show a gradual decrease of gain, and in many cases a fast degradation in performances, attributed to the formation in the avalanches of polymers and their deposit on the strips and the substrate [1–10], causing modifications of the electric field and affecting the operation. The diversity of results obtained by various groups, and the difficulty in consistently achieving long lifetimes is a major concern in view of the use of the devices, and the question of whether or not several thousand MSGC modules could be made to successfully withstand the harsh operating conditions of the proposed LHC experiments [11–13] has yet to be fully answered.

The doses to which detectors will be exposed in the LHC environment have been computed by Monte Carlo simulations. Conservative estimates of the charged particle flux in the CMS tracking detector for the MSGCs closer to the beam pipe provide a value of $\sim 7 \times 10^{11}$ cm$^{-2}$ s$^{-1}$ at the full luminosity of about 10^{33} cm$^{-2}$ s$^{-1}$. Taking into account the fraction of low momentum particles and their angular spread and mainly their curling inside the tracker due to the presence of a solenoidal magnetic field, the equivalent flux of minimum ionizing particles perpendicular to the detectors is $\sim 4 \times 10^{10}$ cm$^{-2}$ s$^{-1}$. For an avalanche size of 10^5 electrons, the corresponding current density is 0.5 nA mm$^{-2}$, an accumulated charge of ~ 10 mC per cm strip for each effective year of LHC operation (10^7 s). Actual doses may be larger, due to neutron- and gamma-induced backgrounds.

Accelerated ageing tests are extensively being carried on by many groups in order to find a set of conditions that would permit MSGCs to survive ten years of continuous operation (100–150 nC cm$^{-2}$) without significant deterioration in performance. There are nowadays enough results and sufficient knowledge to be able to ascertain, among a wide number of parameters, the main conditions for MSGCs to withstand such large doses of radiation in laboratory conditions. However, even if good results have been obtained in small and well controlled setups, a further step is necessary aimed at obtaining similar performances in larger and more complex installations. Presumably, this will only be possible if the fundamental processes leading to ageing, and the ways to avoid it, are better understood interpreting the results of an intensive dedicated experimental research program.

We provide in this paper a summary of the present status of our experience in this respect. Originally born under the code-name RD-10 [14,15], the generic ageing study of gaseous detectors was merged with the more specific research on MSGC's RD-28 [16], and conducted within the Gas Detectors Development (GDD) group at CERN in collaboration with other institutes. After a detailed description of the experimental set-up and methods of measurement, we present and discuss the most significant results obtained with MSGCs operated at high fluxes. The last sections contain a brief summary of these results, and our tentative conclusions on the controversial issue of ageing.

2. Generalities on the ageing processes

Ageing, a permanent degradation of operating characteristics under sustained irradiation, is a well known problem met using gaseous detectors. Years of research in connection with the development and use of multi-wire proportional chambers have led to some understanding of
the processes leading to ageing of gaseous detectors [17–
20]. The detectors' lifetime appears to depend critically on
the nature and purity of the gas mixture, on the materials
used in the chamber assembly and in the gas system, on
the nature of the electrodes and on the electric field
strength at their surface.

Two basic mechanisms lead to wire chamber ageing:

- formation, in the avalanche plasma, of polymers
 issued from ions and radicals of the main gas filling and/or
 polluting molecules, producing deposits on the electrode
 surfaces. The polymerization rate can be largely enhanced
 by catalyzing agents, if present in the gas flow as pollu-
tants: plasticizers used in flexible tubing are a well known
example;

- direct deposition on the electrodes of heavy molecules
 released by materials in contact with the gas, possibly
 helped by the presence of strong electric fields in the
 detector. Residual vapour pressure in oil bubblers used in
 the exhaust pipes is a sample case.

Etching, a concurrent process removing surface layers,
may also take place due to reactive species produced in
the avalanche plasma in presence of specific molecules: carbon
tetra-fluoride is particularly efficient in this respect, and
has been used in wire chambers to prevent ageing pro-
cesses and even to remove deposits produced by previous
exposures to radiation [21,22]. Some experience of using
CF₄ mixtures in MSGCs exists [5,7,23–25]. Due to the
etching properties of the avalanches on the electrodes, it
remains to be proved however that such mixtures can be
used for long-term operation in MSGCs without affecting
the thin metal electrodes themselves; the observed heavy
production of long-lived electro-negative molecules in CF₄
under strong irradiation [26] also casts doubts on the
feasibility of large systems with moderate gas flow and
serial circulation.

While the detailed mechanisms of ageing are quite
complex, the effects on proportional gas detectors are
straightforward: the thin layers of insulating material
building up on anodes interfere with the electric field,
are easily charged up under avalanche conditions and produce
a rate-dependent decrease of proportional gain. Deposits
on cathodes can also induce discharges by secondary
electron emission (or Malter effect [27,28]). An increasing
leakage current and a decreasing detection efficiency in the
irradiated areas are the clear signs of ageing; the process
is usually irreversible and leads easily to fatal breakdown.
All conditions being equal, ageing depends from the
amount of ions produced in the avalanches and a natural
scale factor for the process is the amount of accumulated
charge per unit length of wire. Other factors, such as the
rate of charge production and the level of gas flow have
also been found to affect the rate of ageing for a given
device.

Suitably choosing the operating conditions, acceptable
long-term performance in MWPCs has been achieved, up
to a collected charge of several C cm⁻¹ without significant
gain degradation. The ability to counter the effect of
pollutants in the gas with additives such as water, alcohol,
methylal and other products has also been reported, often
with conflicting results (see for example Ref. [17]). Small
deviations from optimal conditions (for example, pollu-
tants released in the gas flow by sealants used in the
construction of the detector or by the gas mixing and
distribution system) have been found to degrade the long-
term behaviour thus resulting in substantially shorter
lifetimes. Micro-strip chambers appeared from the very
beginning to be even more susceptible to age than their
wire counterpart. One can identify some aspects specific to
MSGCs that can be expected to affect their response to
radiation:

- the conductor area of the strips is typically an order of
 magnitude smaller as compared to wires; the same amount
 of deposits is bound to induce a larger local modification
 of the electric field. Moreover, thin strips can be severely
 and permanently damaged by reactive species and micro-
discharges induced by local charging-up processes;

- polymers or polluants, if present in the avalanche
 plasma, may deposit on the insulating surface between
 strips and affect the electrical properties of the substrate, in
 a region where fields are critically high;

- the higher energy density in the avalanche plasma, a
 consequence of the small anode-to-cathode distance, could
 result in an increased efficiency of polymer production.

The first two issues may explain the shorter lifetimes
observed in MSGCs as compared to MWPCs, given the
rate of polymerization. Deposition of layers on the strips
and on the substrate has often been observed in aged
plates, and is considered responsible for the appearance
of micro-discharges in the irradiated area causing irreversible
damages to both anode and cathode strips (Fig. 1). The
effect of the higher energy density in the avalanches is
more difficult to assess. The available power in gaseous
detectors is orders of magnitude higher than in standard RF
cavity discharges [29], but one cannot induce from this if
the polymerization rate should be larger in gaseous detec-
tors or, on the contrary, lower due to saturation of the
polymerization processes.

From the arguments presented in this general discussion
one can expect ageing, if qualitatively inherent for a given
set of operating conditions, to induce faster and more
severe damages in micro-strip detectors than in wire
chambers. Most experimental results support this state-
ment.

It should be mentioned here also the frustrating outcome
of our efforts of surface analysis by various methods of the
deposits found in damaged structures; much as in the
similar work done for wire chambers, the expected pres-
ence of carbon and hydrogen complexes, together with
unexpected species such as silicon proved so far not very
useful to help understanding the ageing mechanisms.
ambient-induced shifts. For a well behaving, non-ageing detector, one expects gain variations not exceeding a few percent over several months, and a good stability of the system is therefore mandatory. One of the set-ups, originally built for the detector research and development project RD-10 [15], includes also a sophisticated gas analysis system in order to make qualitative and quantitative gas purity measurements.

3.2. Gas mixing and distribution system

Micro-strip chambers, much as the wider family of gaseous detectors, can be operated with a wide choice of gas fillings. As suggested already by early measurements [30,31], the purity of the gas is an essential requirement to obtain acceptable lifetimes of MSGCs under irradiation, with even more stringent requirement than for multi-wire chambers. Outgassing from materials used in the gas system appeared to substantially affect the results; standard gas mixing racks, universally used at CERN for multi-wire chambers, were found inadequate. We have developed and built several clean gas systems in order to provide suitable gas mixtures; two designs are schematically shown in Fig. 2. The most sophisticated (referred to as RD-10) includes a gas analysis line, while the simpler ones (RD-28, also used for the test beam runs) only allow controlled mixing and distribution of the gas. Entirely realized with stainless steel tubing, they were assembled avoiding as much as possible pollution sources (rubber joints, plastic tubing, etc.), and include mass flow meters and active filters to remove oxygen (and to some extent water), and micro-pore filters to stop oils and particulates. Table 1 provides a list of the major components used in the two systems.

In order to avoid pollution from residual oil vapours, bubblers have been avoided altogether and the exhaust is realized with a long line vented directly to the atmosphere. Installing a fixed, long drain pipe (24 m stainless steel, 4 mm in diameter plus 4.5 m copper, 2 mm in diameter) we have measured with the gas chromatograph (see later) the amount of air pollution, as a function of gas flow (Fig. 3). The range of flow used in our detectors (50 to 100 cm3 min$^{-1}$) pollution is negligible, but increases substantially at lower fluxes. In our system, the presence of the long exhaust pipe creates an overpressure at the MSGC of about 20 Torr, a constraint that has to be taken into proper account in the design of the detectors [32].

As apparent in the table, the RD-10 system has been realized generally with higher grade elements; a large fraction (though not all) of the tubing and components could also be baked under inert gas flow with the help of electrical heating ribbons. The system also includes several additional facilities. A temperature-controlled stainless steel or glass vessel could be used to add small controlled amounts of vapours in the gas mixture to study the impact (if any) to the ageing process. A stainless steel container,

Fig. 1. Close view of the strips in a MSGC damaged by long-term local heavy irradiation. A pattern of changing colours over the metal strips, typical of interference, indicates the presence of a thin polymer layer; the extended damages on the edges (mostly on cathodes) are probably a consequence of micro-discharges induced by the polymer formation.

3. Experimental setups to study ageing of gas detectors

3.1. General layout

Three independent test stations have been built in our laboratories to implement systematic long-term irradiation studies with MSGCs. Each station includes a clean gas mixing and distribution bench, an X-ray generator, and a data acquisition and monitoring system allowing to record the detector performance as well as various physical and ambient parameters. Data from the detector under study (pulse heights, counting rate, current on electrodes) can be continuously recorded, together with those of a reference proportional counter monitor and of several ambient meters; normalization procedures, to be described later, are used to single out permanent gain variations (if any) from
Fig. 2. Schematics of the gas mixer set-ups used for the measurements: the most sophisticated one (named RD-10) includes an analysis line and other facilities to study outgassing of materials and to add vapours.

Table 1

Components of the clean gas mixers in the RD-10 and RD-28 set-ups.

<table>
<thead>
<tr>
<th>Component</th>
<th>Set-up</th>
<th>Type & material</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas lines</td>
<td>RD-10, RD-28</td>
<td>Stainless steel 316L 4 x 6 and 2 x 3 mm</td>
<td>CERN</td>
</tr>
<tr>
<td>Line connections</td>
<td>RD-28</td>
<td>Stainless steel plugs</td>
<td>CERN</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>Stainless steel plugs, VCR and UHV</td>
<td>CERN and SAGANA</td>
</tr>
<tr>
<td>Flow meters</td>
<td>RD-28</td>
<td>EL-Flow T 201C-Fu</td>
<td>BRONKHORST</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>Viton (Ar) and Kemring joint (DME)</td>
<td>HIGH-TECH BV</td>
</tr>
<tr>
<td>Oxisorb in argon line</td>
<td>RD-28</td>
<td>CrO₃, several Viton joints</td>
<td>MEISSER GRIESHEIM</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>CrO₃, 1 Viton joint</td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>RD-28</td>
<td>Stainless steel 2 µm MSFT2SS</td>
<td>SAGANA</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>Stainless steel TF 25 MODUC 573011</td>
<td>QUALIFLOW</td>
</tr>
<tr>
<td>No return valves</td>
<td>RD-28</td>
<td>Stainless steel check valve, PTFE joint</td>
<td>SAGANA</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>Stainless steel, PTFE joint</td>
<td>QUALIFLOW</td>
</tr>
<tr>
<td>Manual valves</td>
<td>RD-28</td>
<td>Stainless steel ball valve, PTFE joint</td>
<td>SAGANA</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>Stainless Steel</td>
<td>NUPRO</td>
</tr>
<tr>
<td>Exhaust</td>
<td>RD-28</td>
<td>~20 m copper line</td>
<td>CERN</td>
</tr>
<tr>
<td></td>
<td>RD-10</td>
<td>~24 m stainless steel line</td>
<td></td>
</tr>
</tbody>
</table>
the so-called outgassing box, placed upstream of the detector under test, allows to introduce in the gas flow samples of materials, candidate components for the construction of chambers, allowing systematic studies of the effects of outgassing on the detector lifetime.

In most of our tests we have used dimethyl ether (DME) as one of the components of the gas mixture. Because of the chemical activity of the vapour (a solvent), special care had to be taken in the choice of non-metallic parts in the DME line, and in particular of the sealing joints that could both swell and outgas under the action of the vapour; this subject will be discussed extensively later. A survey of the tolerance of various materials to exposure to DME was published several years ago [33].

3.3. Gas analysis

An essential component of the RD-10 set-up is a powerful analysis station that allows to sample the gas as it flows out of the test chamber, or directly from bottles through an independent line; it permits continuous monitoring of the quality of the gas mixture. The gas chromatograph (GC)\(^1\) consists essentially of an oven containing one or more diffusion columns through which a sample of the substance to be analysed flows, together with a high purity, low mass carrier gas. A detector connected in series with the GC column is used to reveal and identify the various molecular component of the sample. In the stand-by mode, the sample gas flows through a loop in the GC that has the same impedance as the separating column. When a data acquisition cycle is started, a pneumatic valve allows the gas to flow into the column, where different species in the sample are separated by their characteristic retention times, while the oven temperature, after a given time offset, increases according to a pre-selected rate.

The chromatograph is equipped with two associated heads, a mass spectrometer detector (MSD)\(^2\) and an electron capture detector (ECD)\(^3\). The system runs under control of a work station which allows the user to set up the conditions of a gas analysis, to acquire the data and to help in the analysis. The extended data base available for the MSD helps qualitative identification of the species; quantitative analysis is possible if a specific calibration is performed. Both detectors can be optimized to be more sensitive to a certain range of compounds: the choice of the diffusion column (length, thickness and phase thickness), the temperature ramp and the run time selection are crucial. In its present configuration, the analysis system has certain limitations. While the presence of extra peaks in the spectra is a sign of the presence of pollutants, their absence is not sufficient evidence that the gas mixture is clean. The MSD, optimized for the detection of light hydrocarbons, is not very sensitive to heavier molecules, and the ECD is sensitive only to electronegative compounds. Complementary to the direct ageing measurement on detectors, the gas analysis is not by itself sufficient to guarantee the issue.

For the MSD the sample is carried by high purity helium. We have used two capillary columns: one opti-

\(^1\) HEWLETT-PACKARD HP 5890 Series II, modified for gas analysis.

\(^2\) HP 5971 Series.

\(^3\) HP G1223A.
mixed to identify light hydrocarbons1, and the other able to better separate species with higher molecular weight2; the choice was motivated by the fact that our ageing tests are done mostly under Ar–DME mixtures, and hydrocarbons are expected as pollutants in the DME cylinders. The analyzer, driven by the GC/MSD interface, contains under vacuum a cylindrical 70 eV electron impact ion source, ionizing and fragmenting the molecules of the sample. The interface also contains a hyperbolic quadrupole mass filter to sort the ions according to their mass-to-charge ratio (\(M/Z\)) by means of a combined DC and RF signal applied to its segments. A continuous dynode electron multiplier receives the ions that have passed through the mass filter and generates the corresponding electronic signal. Even if the GC did not separate substances such as nitrogen, water, or methane, the MSD would detect their characteristic \(M/Z\) spectra, which will appear together with the spectra of other (low mass) molecules.

During the ageing tests with mixtures containing DME, some impurities can be expected to be present in the bottles: among others, small traces of freons. Their detection is difficult with the MSD, because the expected quantity is very small (<ppm); the ECD is more appropriate having higher sensitivity to electronegative substances. For quantitative analysis, a specific calibration should be made analysing known samples.

Abundant literature exists reporting possible influence of carbon halogens (freons) in the ageing process [33–36]; the high sensitivity of the ECD detector to electronegative compounds make it a good choice to spot the presence of freons as pollutants in the DME, even at a fraction of parts per billion (ppb) levels. A capillary column is used, with helium as carrier gas; a make-up gas (nitrogen with purity 99.99996%) is added to ensure a sufficient gas flow in the detector, and is bombarded in a cell by electrons emitted by a 15 mCi60Ni source, producing a swarm of secondary electrons with thermal energies. The current induced by the free electrons is kept constant adjusting the rate of short-term voltage pulses to the cell electrodes; electronegative molecules, if present in the sample under analysis, capture some of the electrons and are revealed by an increasing frequency of the pulses. There is no information other than the presence of a signal along the retention time (abundance versus retention time); qualitative and quantitative calibrations are needed for identification. We have calibrated the detector for air, water, carbon dioxide, DME, freon 11 (F-11, CCl\textsubscript{2}F\textsubscript{2}) and freon 12 (F-12, CCl\textsubscript{3}F\textsubscript{3}).

Fig. 4 shows the ECD spectrum of pure argon with 10 ppm of F-11 and 10 ppm of F-12 added in a calibrated sample3. The first peak corresponds to F-12, and the second to F-11; identification is possible because F-11, having one more chlorine atom, is more electronegative and saturates the detector. A quantitative calibration then correlates the area of the peak with the known amount of pollutants. The spectrum provided by the MSD for the same mixture is shown in Fig. 5: above, the chromatography of the mixture and an expanded view of it, and below the mass over charge spectrum for both freons. It is worth noting the different response, in terms of amplitude, of the ECD and MSD. The column used in the detector was optimised to detect light hydrocarbons, and the MSD is not very sensitive to these compounds; this results in not well defined peaks.

Table 2 summarizes the specific conditions chosen to operate the MSD and ECD detectors during the gas analysis performed for the measurements presented in this paper.

3.4. High-rate irradiation facility

The long-term stability of MSGCs is studied by measuring the variations of gain with the chamber exposed to high radiation fluxes. While most of the radiation in LHC detectors will be composed of charged particles, laboratory tests are realized with an equivalent flux of soft X-rays, under the assumption that ageing properties are determined mostly by the amount of collected charge and not by details in the charge deposition process. The detector under test (Fig. 6) is mounted facing a collimated X-ray beam provided by the generator; the beam intensity can be adjusted by attenuation, collimation of the beam and/or variations of the current and voltage of the tube. We have used X-ray tubes with copper and iron targets4, having fluorescence peaks around 6 and 8 keV, respectively. Operating the tubes at a moderate high voltage (15 kV)5.5

1 Hewlett-Packard HP PLOT 19091P-AL5.
2 Hewlett-Packard HP PONA 19091S-001.
3 CarbGas.
4 Philips fine focus types PW-2217-20 and PW-2253-20.

 fig. 4. Signal detected with the electron capture detector on the gas chromatograph for a calibrated mixture containing 10 ppm each of Freon 11 and Freon 12 in argon.
minimizes the contribution of the bremsstrahlung continuum. Fig. 7 shows a typical pulse height spectrum recorded with a MSGC irradiated with a copper target tube; in this case, use of a thin aluminium window on the detector preserves the original energy spectrum of the tube. In some cases however, due to differential absorption in the windows, the detected X-ray energy spectrum can be distorted towards its higher energy side, a point that should be taken in proper account in the data analysis [32].

For most measurements the MSGC was illuminated with an effective beam area between 1 and 5 mm²; detected intensities well above 10⁶ s⁻¹ mm⁻² could be realized. The MSGC plates have the read-out electrodes (anode or cathode strips, depending on models) connected together in

Table 2
Mass spectrometer and electron capture detectors conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MSD</th>
<th>ECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection port temperature</td>
<td>100°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Detector temperature</td>
<td>250°C</td>
<td>250°C</td>
</tr>
<tr>
<td>Oven temperature</td>
<td>70°C/200°C@35°C/min</td>
<td>40°C/150°C@10°C/min</td>
</tr>
<tr>
<td>Run time</td>
<td>40 min</td>
<td>50 min</td>
</tr>
<tr>
<td>Column type</td>
<td>PLOT fused silica (Al₂O₃/KCl)</td>
<td>PORA-PLOT Q fused silica</td>
</tr>
<tr>
<td>Column dimensions</td>
<td>50 m length, 0.32 inner diameter.</td>
<td>25 m length, 0.53 inner diam.</td>
</tr>
<tr>
<td>Phase thickness</td>
<td>5 μm</td>
<td>20 μm</td>
</tr>
<tr>
<td>Column pressure</td>
<td>35 kPa</td>
<td>35 kPa</td>
</tr>
<tr>
<td>Signal information</td>
<td>Area, retention time and spectrum M/Z</td>
<td>Area and retention time</td>
</tr>
</tbody>
</table>
Fig. 6. Schematics of the experimental set-up used for long-term irradiation of detectors. A collimated X-ray beam is used to expose the chamber to high radiation fluxes; an attenuated fraction of the beam can be detected in a single wire counter for monitoring purposes. Pulse height and current can be recorded on groups of electrodes in the test chamber; under computer control, a thin absorber can be inserted in the main beam to reduce the flux.

Fig. 7. Energy resolution of a MSGC detecting the attenuated 6 keV X-ray beam used for the long term irradiation. The modest resolution is mainly due to the bremsstrahlung continuum under the main fluorescence line.
groups and grounded; one or more of the groups are equipped with pulse-height or current recording electronics. The other set of strips is connected in groups to the HV power supply through protection resistors and a filtering network to reduce noise, as shown in the figure. In order to allow high current measurements without voltage drops, the protection resistors are kept low in value (few hundred kΩ). Values of current delivered from the power supplies are also recorded; we have used for this purpose custom-built HV modules including current meters with ≈0.2 nA sensitivity\footnote{CAEN N471 A with direct readout.}. Fluctuations in gain of the test chamber due to changes in temperature, pressure, or particle flux are corrected, as described in the next chapter, using the recorded data on a single-wire proportional monitor counter in series with the gas of the MSGC and irradiated with an attenuated fraction of the photon flux (<10\,\text{s}^{-1} \text{per mm of wire}). During ageing tests, both detectors are continuously irradiated and current, pulse height and counting rate are recorded. Together with the DC currents due to the irradiation measured on the active area and on the drift electrode, low-rate pulse height distributions and leakage currents are recorded decreasing temporarily the flux on the MSGC with the help of a thin stainless steel absorber foil inserted in the X-ray beam under computer control. Pressure and temperature are also periodically registered. The graphic and analytic capabilities of the computer are used to monitor frequently the progress of the run without disturbing the data collection.

4. Data analysis and normalization procedures

4.1. Generalities

The long running time, up to several months, needed for each test exposes the detector under irradiation to gain fluctuations due to changes in the ambient conditions (pressure, temperature, humidity), variations in the X-ray flux, changes in the gas composition that could mask the real effects of the ageing process or be wrongly interpreted as signs of deterioration of the counter. We have developed several methods for data reduction, aimed at removing the effects of such instabilities; each method has its own advantages and limitations. It should be emphasised that the corrections involved in the normalization procedure may exceed in value the effect of ageing itself, and therefore other, verifications of the results have been used, such as short-term gain profiles realized by mechanical scanning with the source across the irradiated region, and control measurements with detectors known to present little or no ageing.

4.2. Correction based on the measurements of temperature and pressure

The gain in proportional counters, and therefore the detected current at constant rate and the pulse height distribution, depend from the gas density, function itself of the temperature T and of the pressure P. To remove ambient-induced variations, data need to be corrected for changes in temperature (mainly day-night oscillations), and pressure determined by weather patterns.

The correlation between low rate raw gain data, recorded with the monitor proportional counter, and the ratio T/P is clearly apparent from Fig. 8. In principle, one can compute the gain dependence from P and T in proportional counters using one of the expressions provided in the literature; we have reasons to believe however the functional dependence to be different in MSGCs due to the particular field structure and to changes in the substrate resistivity, and we have therefore preferred a more phenomenological approach.

The method makes use of the recorded values of temperature and pressure T_c and P_c during the run, with an ad-hoc phenomenological correlation function that we have written as follows:

\begin{equation}
G_i = G_0 \left(\frac{T_i}{T_c} \right)^{a \left(\frac{P_i}{P_c} \right)} \left(\frac{P_i}{P_c} \right)^{b \left(\frac{T_i}{T_c} \right)},
\end{equation}

where (T_i) and (P_i) are the mean values of temperature and inverse pressure over the test period, and the exponents a and b are chosen experimentally in order to minimize the standard deviation of the data fitted to a smooth distribution.

For a verification, we have used the expression to correct the gain fluctuations recorded in the single wire monitor counter, not expected to experience ageing due to the low dose irradiation; Fig. 8 shows the constant gain obtained correcting the measured values according to Eq. (1) with $f = 1.6$, $g = 0.3$.

Fig. 9 shows the similar result obtained over the same period of time with the gain recorded in a MSGC under heavy irradiation; in this case the best correction was obtained with $f = 0.2$ and $g = 0.3$, and for this choice the average gain remains constant. The MSGC under test (chromium strips on S-8900 glass, operated in argon–dimethylether) was indeed not expected to suffer ageing up to very large doses. Fig. 10 shows the dependence of the corrected data distribution from the value of the parameters appearing in the expression; for the choice, we have selected the values of f and g that minimize the standard deviation of the difference between corrected data and a smoothed fit to the distribution.

The described method, despite its simplicity, suffers from the limitation of not taking into account fluctuations in the gas composition and, if applied to the measurement of current (as against pulse height), variations in the X-ray
flux. Moreover, best values of the exponents in Eq. (1) vary depending on the structure of the MSGC and on the nature of the substrate.

4.3. Correction using the monitor counter

As mentioned, a single-wire proportional counter was arranged in series on the gas flow with the MSGC under test, and irradiated at a reduced rate by a second output from the generator. In principle, its gain is affected by the same sources of fluctuations as the MSGC, except those caused by the strong irradiation, and can therefore be used as term of reference for normalization. We have used the following expression to correct the data:

\[G'_f = G f \left(\frac{M_t}{M} \right)^k \]

(2)

where \(G_f \) is the measured value of gain on the MSGC, \(M_t \) and \(\langle M \rangle \) the actual and average values of the monitor gain. The value of exponent \(k \) reflects the amount of correlation between the gain in the two counters. Fig. 11 gives an example of gain recorded on the monitor during a long-term irradiation period, and of the gain measured with a
MSGC and corrected, using Eq. (2), with different values of the exponent. For each value of h, we have fitted a smoothed curve through the data, and computed the standard deviation of the difference to the corrected points; as shown in Fig. 12, a value $h = 0.2$ provides the best choice. A disadvantage of the method is that it does not take into account possible temperature dependence of the leakage current and of the gain on MSGC support, a result of the corresponding changes in resistivity of the substrate; this effect appears to be more important in the case of low resistivity supports with high leakage currents. As a consequence, the value of the correlation coefficient depends on the particular structure of the MSGC.

4.4. The double beam method

This method has been developed recently to overcome some of the above mentioned limitations. Together with the main irradiated spot, a second region in the MSGC under test is simultaneously exposed to an attenuated fraction of the X-ray beam, and the pulse height distribution is recorded; assuming that ageing will not occur
in the region exposed to the low dose, the ratio of pulse heights measured on the two spots provides a correction-free information on permanent changes in gain. Fig. 13 shows schematically the set-up, realized with two collimating plates, one fixed on the MSGC with an horizontal slit and a second with two holes that can be shifted in the horizontal direction. Thin stainless steel attenuation foils can be mounted on the holes to adjust the beam intensity. Fig. 14 provides an example of raw and corrected data obtained with the procedure; medium-term variations are clearly removed.

A drawback of the double beam calibration method lays in the possibility for polymers or discharges produced in the irradiated region to affect also the reference spot; runs are however usually suspended much before serious irreversible damages are detected. Complemented by the previously described calibration procedures, the double-beam method appears to provide good stability of results in long-term measurement.

4.5. Estimation of the rate of ageing

Ageing of gaseous detectors appears as a decrease of gain during the irradiation. It is common practice to express the gain variation through a quantity R [37] providing the relative gain drop normalized to the collected charge:

$$ R = -\frac{1}{Q} \frac{\Delta M}{M_0}, $$

where Q is the total charge (in C or C cm$^{-1}$) and $\Delta M/M_0$ the relative gain change.

The value of R appears experimentally to depend on the total collected charge in a given run, in general (but not always) decreasing with Q as shown by the example in Fig. 15; this makes it often difficult to compare results obtained in different conditions. In the present work, quoted values of R refer to asymptotic value at large collected charge; however, only the analysis of a full measurement such as the one shown in the figure can avoid drawing superficial conclusions when making comparisons of ageing rates.
5. Experimental results

5.1. Generalities

A vast amount of experimental data has been accumulated over the years exposing the evolving models of detectors to radiation and recording their counting characteristics. While in principle continuing care was taken to try and modify only a few, if any, parameters at each exposure, this is often not possible, for example when comparing plates made with different metals or different substrates (and usually a different manufacturing technology). Moreover, early measurements were realized in less than optimal conditions of gas purity, and only an increasing experience in the use of the analysis line could sort out unexpected sources of pollution; an example is the freon outgassing found from a Teflon seal in a supposedly all-metal valve (see later). Some key measurements were

Fig. 14. Example of gain correction realized with the double-beam method; raw data (current measured at high rate) are normalized to the low-rate pulse height measurement (reference).

Fig. 15. Relative gain recorded during an ageing test, and computed values of the parameter defined in Eq. (3). In the plot, the points marked R are computed as the difference between relative gains, while the values R_c correspond to a fitted slope to the data from the origin to the point of abscissa Q.
5.2. Gas filling and purity

Micro-strip chambers have been operated with a large variety of gas mixtures; to prevent fast ageing at high rates, convincing evidence suggests to avoid altogether the use of hydrocarbons as quenchers [5,31,39]. Dimethyl ether (DME), in mixtures with noble gases, has been found to meet both the good quenching and the ageing requirements. All measurements here described have been realized in argon–DME mixtures, mostly in a 50–50 volumetric ratio, an outcome of our previous optimization studies [40].

In view of the long duration of measurements and of the diverse installations used, it was considered essential to certify the gas purity at the bottles’ level. Argon, obtained from CERN’s stockroom in research grade (A 45), has a guaranteed maximum content of O₂ lower than 5 ppm and 10 ppm of H₂O; our analysis on selected bottles confirms these values (see Fig. 16), and was only performed occasionally. We have systematically analysed the DME bottles with the gas chromatograph optimized, as described in Section 2.2, for the detection of light hydrocarbons and electro-negative pollutants of the freon group. Figs. 17 and 18 show an example of analysis for a bottle of average purity; the MSD detects the presence of hydrocarbons, and the ECD a clear signal for two electro-negative pollutants, identified through the mass spectrum as F-11 and F-12. The calibration described in the previous section provides then quantitative values for the halogens, while for the other pollutants only a qualitative indication has been obtained. Table 3 summarizes the results obtained for several cylinders, from different deliveries, together with the (average) certification from the producer. Pollution levels vary between bottles, particularly for air and the freons, but remain generally at a rather low level; some bottles appear exceptionally good. The difference in the abundance of hydrocarbons (such as ethene, propane, 1-propene, butane, 1-butene, 1-propene 2-methyl and 2-butene) are significant from bottle to bottle. It has also been observed that in some cases the amount of pollutants or air vary as the gas is being used, probably due to a process of selective distillation [15,19].

On-line purification of the gas can be a solution, provided one finds appropriate filters. We have tested the effect of a freon-specific filter on a bottle of DME containing a particularly large amount of Freon 11 and 12 (cylinder # 6164, see Table 3). As revealed by the ECD spectra, see Fig. 18, F-11 is very efficiently removed, but the content of F-12 is not affected while there is an increase the abundance of water vapour. We have found however no effect of the removal on ageing. As shown in Fig. 19, a chamber made with gold strips on D-263 glass would age in a similar way before and after insertion of the filter, and if anything the result is worse for the filtered gas case. A control run made with the same bottle without filtering with our standard chromatic MSGC on electron-conducting glass (Fig. 20) reveals instead no ageing at all, a behaviour that will be discussed in Section 5.4. It is therefore suggested that, at least in the range of pollutants values found in the tested DME cylinders, removal of F-11 has no effect on the ageing rate, if any; Table 3 could be considered as indicative of the tolerance levels for the pollutants identified. It should be also mentioned that we have currently used DME conditioned in 45 kg bottles (22 m³ gas). In the RD-10 laboratory, with a single test station, bottles need to be replaced every 5–6 months, and

10 MESSER-GRISHEIM.

11 SEMI-GAS SYSTEMS.
therefore a typical 3-month run would make use of the same bottle. In the RD-28 laboratory instead the larger consumption required a more frequent change, about every two months; a smear in the data would reveal the moment of change but appears to have no effect on operation.

5.3. Materials outgassing

One of the difficulties in establishing firm conclusions about ageing comes from the often incompatible results obtained by different groups. One reason for this is the different degree on cleanliness of the materials used in performing the ageing tests. An example case is shown in Fig. 21 [41] where the same MSGC, exposed to radiation in the two laboratories with different degree of cleanliness, exhibited lifetimes differing by an order of magnitude. In this particular case, and in order to explain the difference, the chromatography station was temporarily moved from the “clean” RD-10 set-up to the RD-28 laboratory and helped identifying a source of pollution: the ball-bearing valves used in the gas system, was found to release traces of Freon 113 (F-113, C₂F₃Cl) as it can be seen in Fig. 22 showing the correlation between gain and the peaks revealed by the chromatograph at each manoeuvring of the valve. The pollutant was clearly identified with the help of the MSD (Fig. 23); local permanent damage of the anode strips was also visible after the irradiation. Disassembly of the valves revealed the possible culprit to be a Teflon joint;
we do not know if the pollutant was introduced by the manufacturing process of the Teflon itself, or was a result of the use of cleaning fluids.

Having identified the source of pollution, an attempt to clean the system was made disassembling all valves and baking them at ~100°C for a few hours. Fig. 24 shows the result of a medium-term irradiation realized in the improved RD-28 set-up with a new MSGC plate (chromium on S-8900); 30 mC cm⁻¹ have been collected with no detectable gain drop.

Using the RD-10 setup, we have subjected a wide range of materials to outgassing tests, in view of their anticipated use for the manufacturing of gaseous detectors and MSGCs in particular. Whenever possible samples of materials are prepared as thin plates of similar surface (around 100 cm²); epoxies are spread over inert glass supports and cured following the recommended procedure. After thorough cleaning and pumping overnight at 10⁻³ Torr to eliminate possible residuals of the cleaning fluids, samples are introduced in the outgassing box of the RD-10 setup (see Fig. 2) and fluxed with pure argon, pure DME or with a mixture of the two. The GC is then used to analyze the outgassing gas. In order to increase the sensitivity of the system, samples can be warmed up in thermal cycles; if pollution is detected, the measurement is suspended in order to avoid the risk of contamination of the system. For good materials the thermal cycles are continued until reaching 50°C; absence of detected pollu-

Table 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>no</td>
<td><50</td>
<td>no</td>
<td>no</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td>no</td>
</tr>
<tr>
<td>675</td>
<td>1000</td>
<td>85</td>
<td>no</td>
<td>no</td>
<td>35</td>
<td>3</td>
<td>0.3</td>
<td>no</td>
</tr>
<tr>
<td>2124</td>
<td>1800</td>
<td>70</td>
<td>no</td>
<td>no</td>
<td>5</td>
<td>3</td>
<td>0.7</td>
<td>no</td>
</tr>
<tr>
<td>168</td>
<td>5300</td>
<td>50</td>
<td>no</td>
<td>no</td>
<td>580</td>
<td>80</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>287</td>
<td>400</td>
<td>70</td>
<td>no</td>
<td>no</td>
<td>155</td>
<td>55</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>433</td>
<td>300</td>
<td>50</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>0.5</td>
<td>no</td>
</tr>
<tr>
<td>7688</td>
<td>no</td>
<td>4</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>0.5</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>2721</td>
<td>400</td>
<td>0.001</td>
<td>0.3</td>
<td>no</td>
<td>15</td>
<td>2</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>6164</td>
<td>400</td>
<td>25</td>
<td>0.1</td>
<td>no</td>
<td>0.1</td>
<td>0.1</td>
<td>6</td>
<td>yes</td>
</tr>
<tr>
<td>2038</td>
<td>5400</td>
<td>80</td>
<td>1</td>
<td>0.001</td>
<td>155</td>
<td>50</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>7621</td>
<td>13,100</td>
<td>80</td>
<td>2</td>
<td>0.1</td>
<td>200</td>
<td>75</td>
<td>10</td>
<td>yes</td>
</tr>
<tr>
<td>6091</td>
<td>1600</td>
<td>60</td>
<td>2</td>
<td>0.2</td>
<td>190</td>
<td>65</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>2004</td>
<td>2600</td>
<td>130</td>
<td>3</td>
<td>0.5</td>
<td>14</td>
<td>3</td>
<td>0.5</td>
<td>no</td>
</tr>
</tbody>
</table>
ants at this point is considered as a necessary (but not sufficient) condition for the use of the component under analysis.

In the early measurements, a single wire proportional counter was used downstream on the gas flow to check the effects of pollutants on gain, and in some cases to detect fast ageing under irradiation. Figs. 25 and 26 show example cases for two types of epoxies (from Ref. [38]). A correlation between outgassing and measured gain is clearly seen for the "bad" epoxy: in this case, the gain remains lower after suspending the thermal cycles, a clear indication of permanent damage or ageing.

Table 4 provides a list of the materials tested so far, either for our own needs or on request from external groups. In view of the time required for an ageing measurement, we have only verified the outgassing properties for most materials, and discarded those releasing detectable pollutants. For some "good" materials, namely VECTRA and E-505, full evidence of suitability was gained manufacturing complete MSGCs and subjecting them to a long-term ageing measurements [2,42] (see also the following sections). In interpreting the results, it should be noted that the release of pollutants at high temperature might not represent the behaviour in normal conditions,

Fig. 19. Comparison between ageing measured with an MSGC with gold strips on boro-silicate glass, before and after filtering away Freon 11; if anything, the ageing rate is larger for the cleaner DME.

Fig. 20. Control ageing run with an MSGC made with chromium on electron-conducting glass, making use of the same DME bottle as for the previous measurement, without filtering.
and in any case may not have adverse long-term effects; also, the limited range of sensitivity of the MSD-ECD discussed before implies that some pollutants might have gone undetected.

5.4. Dependence of ageing on the substrate material and metal of the strip

Early observations suggested that the ageing rate could be affected by the nature of the substrate and of the metal used for the strips, the combination of low resistivity supports and gold providing better results than aluminium or chromium on high resistivity substrates [1,5,9,25]. This trend appeared to be particularly true when the gas purity was not optimal due to outgassing of materials. Fig. 27 [3] shows for example the comparison between ageing rates observed with plates manufactured on high resistivity boro-silicate12 and electron-conducting glass11 when unsuitable frame manufacturing materials (ibreglass and

Footnotes
11 DESAG D-263.
12 SHOTT S-8900.
epoxy) were still in use. Fig. 28 shows the better performance obtained with gold strips on low resistivity glass, compared to chromium, again in what are believed to be similar conditions. In view however of the difficulty of comparing results accumulated over long periods of time, or obtained by other groups, we have reasons now to suspect the correctness of our interpretation of the results; subsequent work has shown indeed that the ageing rate may depend from unexpected parameters such as the current density used in the irradiation (see Section 5.5 and Ref. [42]) and perhaps the gas flow, not always comparable in the early measurements. We have on the other hand confirmed that, when measurements are repeated in certified clean conditions, no ageing is observed for chromium chambers manufactured on a low resistivity substrate, see Fig. 29 [42]. The measurement was realized at a rather low current density (4.7 nA mm⁻² s⁻¹ initially, continued at 9.3 nA mm⁻² s⁻¹), an important factor to consider in view of the observed current dependence of ageing (see the next section). No traces of deposits or damage of the plate could be observed by optical inspection of the irradiated region with a microscope (see Fig. 30).

The dominant role of the nature (namely the resistivity)
Fig. 25. Gain variation measured with a single-wire proportional counter downstream from the box containing samples of materials (Araldite epoxy). A decrease in gain is detected in coincidence with each cycle of increase in the temperature of the material, clearly due to outgassing; a permanent damage (ageing) is also observed at the end of the irradiation.

determining the ageing properties is the nature of the support and not the metal used.

The tolerance to very high exposures of MSGCs made on low resistivity substrates has been verified by many measurements; the recent development of detectors manufactured on diamond-coated glass with a surface resistivity around $10^{13} \Omega \cdot \square$ confirms our findings [43]. Fig. 32 [44] shows the long-term behaviour of a medium size ($80 \times 80 \text{ mm}^2$ active) MSGC plate made with chromium strips on diamond-coated D-263 glass; no change of gain is detected, within the experimental errors, after a total

Fig. 26. Long-term ageing measurement with the single-wire counter with samples of E-505 epoxy in the outgassing box, subjected to thermal cycles. No gain variations are observed during or after the measurement.
Table 4
Materials and epoxies tested for outgassing with the gas chromatograph

<table>
<thead>
<tr>
<th>Material</th>
<th>Type</th>
<th>Use</th>
<th>Surface [cm²]</th>
<th>Outgassing in Ar</th>
<th>Outgassing in DME</th>
<th>Outgassing in Ar-DME</th>
<th>Effect in SWPC</th>
<th>Global result</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURALCO 4525</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>156</td>
<td>Yes</td>
<td>@ room T</td>
<td>Gain loss</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>DURALCO 4461</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>156</td>
<td>Yes</td>
<td>@ room T</td>
<td>Gain loss</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>HEXACEL</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>No</td>
<td>No</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPO 93L</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Yes</td>
<td>@ T > 40°C</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEXCEL</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Yes</td>
<td>@ T > 40°C</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A40</td>
<td>Room temp.</td>
<td>assembly</td>
<td>1.5 h@80°C</td>
<td>176</td>
<td>Yes</td>
<td>No</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>AMICON</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>131</td>
<td>Yes</td>
<td>@ T = 75°C</td>
<td>No effect</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>ARALDIT AW106 HV</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Yes</td>
<td>@ T > 45°C</td>
<td>905</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>E505</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Yes</td>
<td>@ T > 45°C</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPOTECN</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Fast</td>
<td>Fast</td>
<td>972</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>EPOTEK</td>
<td>Epoxy</td>
<td>MSGC</td>
<td>150</td>
<td>Fast</td>
<td>Fast</td>
<td>972</td>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>STESALIT</td>
<td>Fibreglass</td>
<td>MSGC</td>
<td>380</td>
<td>Yes</td>
<td>@ T = 75°C</td>
<td>No effect</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>VECTRA</td>
<td>Liquid crystal polymer</td>
<td>MSGC</td>
<td>142</td>
<td>Yes</td>
<td>@ room T</td>
<td>No effect</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>RYTON</td>
<td>Polysulphur phenylene</td>
<td>MSGC</td>
<td>336</td>
<td>Yes</td>
<td>@ room T</td>
<td>No effect</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>PEEK</td>
<td>Polyether ether ketone</td>
<td>MSGC</td>
<td>260</td>
<td>No</td>
<td>No</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td>Copolymer ethylene-propylene</td>
<td>Joint</td>
<td>300</td>
<td>Yes</td>
<td>@ room T</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVDF</td>
<td>Fluorinated polyvinylidene</td>
<td>Joint</td>
<td>500</td>
<td>Yes</td>
<td>@ room T</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VITON</td>
<td>Fluorinated copolymer</td>
<td>Joint</td>
<td>412</td>
<td>Yes</td>
<td>@ room T</td>
<td>Bad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

accumulated charge close to 100 mC cm⁻². We do not know at the present time if the negative results obtained with boro-silicate glass are due to a modification of conductivity due to internal migration of ions (the majority charge carriers in the glass), or to an enhanced sensitivity of the gain to small modifications in the surface resistivity that could be induced by very thin deposits. It is intuitive, but remains to be demonstrated, that the polarization currents generated by a low surface resistivity can have a stabilization effect on the value of the electric field, against modifications induced by thin deposits.

Attempts to investigate the possible effects of the X-ray absorption in the substrate itself have given so far negative results; no change of surface resistivity or gain were observed on a boro-silicate MSGC irradiated in conditions of no gas gain (lower voltage or heavily quenched gas) with X-ray doses equivalent to those used for the ageing tests.

5.5. Dependence on the current density

It appears, particularly for the high resistivity supports, that a critical role in determining the ageing behaviour is played by the exposure rate. or, more precisely, the current density at which the test is performed. This is demonstrated by the set of measurements shown in Fig. 33, obtained with the same MSGC (chromium on D-263 glass) in identical conditions except for the current density used in the exposure, from 6 to 45 mA mm⁻². No drop in the (normalized) detected current is observed, up to large values of accumulated charge when measurements are realized at high current densities (above ~30 mA mm⁻²), while at lower dose rates there is considerable damage.

This effect, not observed with lower resistivity substrates, seems to be characteristic of boro-silicate glass, and can be related to the way the electric field configures itself depending of the amount of ions that have to be
neutralized. Notice also that the time scale involved in the measurements is quite different; plotting the gain as a function of time, however, does not reveal special features (Fig. 34), although one could speculate on the competing effects of various processes as ion migration in the glass, bulk damage due to radiation, accumulation of charges on thin polymer layers. The real outcome is that MSGC, manufactured on boro-silicate glass and irradiated in clean operating conditions at moderate fluxes, exhibit substantial ageing, a qualitative difference with the observations with electron conducting glass. This observation also invalidates the extrapolation to normal operating conditions (lower current densities) of measurements at very high dose rates, such as the one quoted in Ref. [25], realized at around 80 nA mm\(^{-2}\).

The gain loss is not only a function of the current density used for the irradiation, but also of the rate at which the gain is measured. Fig. 35 shows that in the irradiated position different gain drops are measured when scans along the strips are realized using different X-ray fluxes; notice that the higher the flux used for the measurement, the lower appears to be the gain drop. This is

Fig. 27. Relative gain as a function of the accumulated charge measured with two MSGCs manufactured on boro-silicate (D-263) and electron conducting (S-8900) glass, assembled with conventional fiberglass frames, rubber O-rings and epoxies.

Fig. 28. Long term gain as a function of accumulated charge measured with two MSGCs made with gold and chromium strips on semi-conducting glass (C1-85 and S-8900 respectively). Both measurements were realized in the moderately clean RD-28 setup.
consistent with the apparent absence of losses, when the gain is deduced from a current measurement at very high rates.

A case of near independence of ageing from the overall absorbed dose is shown in Fig. 36, where two spots irradiated at different rates (6 and 45 nA mm\(^{-2}\)) exhibit similar gain drops when measured with a low-rate scan, although the heavier irradiated one had absorbed twice the charge of the other. This has been found to be a consequence of the different time lapse between irradiation and measurement in the two cases (few minutes for the lower current run, several weeks for the higher current). The time dependence of the gain decrease in the irradiated region is shown in Fig. 37: the original gain recovers, a possible manifestation of local surface charging up, or of effects due to long term ions migration. Once again, none of these effects are observed when using low-resistivity supports, as discussed in the previous section.

In order to check if any detail in the operating conditions (drift field, gas composition, frame materials) was responsible of the results obtained with the boro-silicate glass, a number of ageing tests were repeated changing parameters one at the time. All measurements were realized at a gain around 10\(^{6}\). The results are summarized in Table 5, and show that none of the operating conditions, including the presence of Freons in DME, sensibly affect the ageing of plates, except for the current density. With reference to the standard operating condition (first row) we have underlined the parameter modified in the various runs and the corresponding ageing rate \(R \). It can be noticed that the ageing rate is detectable only for tests made at a current density lower than 14 nA mm\(^{-2}\) (a value of \(R = 0.001 \) implies a 10% gain drop after 100 nC cm\(^{-2}\)). Independently from the operating conditions, the gas mixture and the chamber frame materials, the rate of degradation is constant for low values of the current density.

5.6. Can additives help?

Abundant bibliography and anecdotal evidence exist on the effect on multi-wire chambers lifetime of different additives like methylal, alcohol, water, oxygen, hydrogen [17,45–48]. The general trend is that most of these substances, added to the gas mixture in small concentrations, usually (but not always) extend the lifetime of the detectors, sometimes by an appreciable factor, and in some
Fig. 31. Lifetime measured on two plates made on D-263 glass with chromium and gold strips. The tests were made at moderate current densities (around 10 nA mm⁻²) and identical conditions; both exhibit substantial ageing.

...cases even restore the original operation in aged devices. The results have been variously interpreted as due to an inhibition of the polymerization processes, to a suppression of secondary photon-mediated phenomena, to a simple restoration of conductivity on damaged electrodes due to surface vapour adsorption [17,18,28]. There were a priori reasons to hope that similar beneficial effects could be obtained in MSGC’s, thus relaxing the requirements for the purity of the gas systems.

Several attempts were made to add vapours to the main argon-DME gas mixture. The first observation is that when trying to add quantities similar to those used in wire chambers (a few percent in volume), the MSGC would discharge at rather low voltages, probably a consequence of a modification of the substrate’s dielectric rigidity due to molecular adsorption. Reducing the additive to acceptable levels (well below 1% for water) we have found no improvement and even some worsening of the ageing behaviour, as shown in Fig. 38 for a 0.1% addition of water. Amazingly, the gain drop is revealed by the measured value of current during the irradiation, but not by the low rate pulse height distributions. The picture in Fig.

Fig. 32. Long-term irradiation of a MSGC made with chromium strips on diamond-coated D-263 glass. Raw data have been corrected for ambient variations. The measurement was performed in the RD-28 set-up, in normal cleanliness conditions.
Fig. 33. Ageing of a MSGC made on D-263 glass and exposed, in different positions, to various X-ray beam intensities; rates are expressed as a current density in the irradiated spots. All other parameters are kept identical. Measurements realized above 20 nA mm$^{-2}$ do not show ageing.

Fig. 34. The same data of the previous figure, plotted as a function of time; no particular time dependent feature is observed. While use of higher current densities is convenient to limit exposure times, it is obviously not representative of the ageing properties at lower dose rates.
concentrations. A positive result would significantly release the tight requirements in the quality of the gas and of the materials.

6. Summary of results

Over the years, a large amount of data have been accumulated by many concerned by the crucial issue of long-term survival of MSGCs in a high radiation environment. The complexity of the parameters involved in determining the ageing properties of detectors and the often conflicting results obtained in seemingly identical conditions have not allowed so far to obtain a clear understanding of the ageing processes and a general solution to the problem. In our group, we have attempted to address the question with a strategy aiming at keeping minimum the number of variables, changing only one operating parameter at a time, and continuously recording the nature and amount of pollutants in the system which appears to be one of the dominant factors in determining the ageing properties. Although we foresee to explore a wider range of physical parameters in the future, our present experience has been limited to the use of argon–
DME mixtures at relatively large flows (50 to 100 cm3 min$^{-1}$), X-ray generators to emulate high rate of charged particles, and MSGCs manufactured on standard boro-silicate, electron conducting glass and diamond-coated glass with chromium or gold strips.

Our major observations are summarized in what follows:

- The amount of pollutants in the gas system plays a major role in determining the ageing properties of the detectors; outgassing from materials, epoxies, joints, tubing has to be carefully controlled before assembly and kept at ppm levels or better. Use of an on-line analysis system (gas chromatograph) is strongly recommended to allow identification and removal of pollution sources and to guarantee reproducibility of the results; a correlation has been found between ageing rates and the amount of carbon halogens (electro-negative) pollutants, probably through a catalyzing effect on other organic residues.

- A provision for outgassing by taking, prior to the start of operation, of the largest part of the gas mixing and distribution system seems mandatory to prevent irreversible damages in the detectors; in a small system, an overnight heating using resistive tape to around 150°C of all passive tubing components in presence of a pure argon flow has proved to be necessary and sufficient, allowing even to recover from accidental serious pollution of the system.

- Standard research grade argon is consistently pure enough to allow its use in open flow, with only an active filter to remove residual oxygen and water and a micro-pore filter for particulates. The amount of pollutants in DME is instead rather variable and should be checked before using the bottles; particular attention should be given to fluorinated compounds (Freons) and light hydrocarbons. Within the limits of our experience (12 standard 150 l cylinders analyzed so far), no correlation was found however between the amount of pollutants and ageing.

Table 5
Summary of the ageing tests done with an MSGC made on D-263 glass with chromium strips. In each row, underlines identify the parameter changed in respect to the baseline values (first row).

<table>
<thead>
<tr>
<th>GOAL</th>
<th>Charge density [nA mm$^{-2}$]</th>
<th>X-ray gen. voltage [kV]</th>
<th>Anode voltage [V]</th>
<th>Drift field [kV cm$^{-1}$]</th>
<th>DME [%]</th>
<th>R [cm mC$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference values</td>
<td>12.7</td>
<td>15</td>
<td>540</td>
<td>6.7</td>
<td>50</td>
<td>0.0025</td>
</tr>
<tr>
<td>Charge density</td>
<td>32</td>
<td>20</td>
<td>540</td>
<td>6.7</td>
<td>50</td>
<td>0.0001</td>
</tr>
<tr>
<td>% of DME</td>
<td>14</td>
<td>15</td>
<td>405</td>
<td>6.7</td>
<td>10</td>
<td>0.015</td>
</tr>
<tr>
<td>Charge density</td>
<td>6</td>
<td>15</td>
<td>540</td>
<td>6.7</td>
<td>50</td>
<td>0.0027</td>
</tr>
<tr>
<td>Charge density</td>
<td>45</td>
<td>20</td>
<td>551</td>
<td>6.7</td>
<td>50</td>
<td>0.0004</td>
</tr>
<tr>
<td>X-ray energy</td>
<td>12.7</td>
<td>20</td>
<td>540</td>
<td>6.7</td>
<td>50</td>
<td>0.0035</td>
</tr>
<tr>
<td>Drift field</td>
<td>13.6</td>
<td>20</td>
<td>540</td>
<td>3.4</td>
<td>50</td>
<td>0.004</td>
</tr>
<tr>
<td>Frame (VECTRA)</td>
<td>12.5</td>
<td>20</td>
<td>540</td>
<td>6.7</td>
<td>50</td>
<td>0.036</td>
</tr>
</tbody>
</table>
thus providing indicative tolerance levels for pollutants. No beneficial effect of removing traces of a notoriously suspicious pollutant (Freon 11) was detected, suggesting that it should not be necessary to use expensive active filters in the DME line.

- Exposure to high-flux X-rays was used to emulate the lifetime properties of detectors with an accelerated time scale, the natural unit of measurement being the amount of charge collected per unit length of strips. We have found however that the ageing rate depends on the dose rate, or current density used in the irradiation; the effect is particularly strong for detectors built on high resistivity boro-silicate glass. In this case, while in clean operating conditions the gain (deduced from a measurement of current) remains constant at high current densities (above 30 nA mm⁻²), severe gain losses are observed at lower irradiation rates. This observation raises a question on the relevance of ageing results obtained at high dose rates, extrapolated to normal conditions; it also makes doubtful some early comparisons of performances realized at very different rates. In all recent measurement we have adopted a maximum current density of 10 nA mm⁻², an acceleration factor of about 20 compared to the anticipated LHC maximum expected rates; in view of the measurement times involved (three months to reach 100 mC cm⁻¹) this choice is reasonable but arbitrary and its validity should be checked by a comparison with data obtained in more realistic conditions.

- On boro-silicate glass substrates, and in clean operating conditions, a low rate pulse height analysis in the seemingly unaffected regions exposed to high currents immediately after the exposure reveals a strong local, rate-dependent gain loss. With the detector left on voltage without irradiation, the gain tends to recover towards its original value with a time constant of several days. This behaviour is suggestive of a temporary modification of the electrical properties of the support not caused by polymerization, and introduces an unexpected time dependence of the results making comparisons delicate.

- In optimal operating conditions (argon-DME mixtures with a clean gas system, through choice of manufacturing materials, moderate current density for the irradiation), no ageing has been observed in repeated exposures, up to and above 100 mC cm⁻¹ of accumulated charge, for MSGCs manufactured on low resistivity supports (~10⁻⁴ Ωcm), and independently from the metal used for the strips (chromium or gold). No time or rate dependent effects,

![Fig. 38. Effect on MSGC lifetime of the addition of water to argon-DME. After a moderate exposure, the gain deduced from the current measurement drops substantially, while the average pulse height (measured at low rate) remains constant. Chromium strips on S-8900, argon-DME-H₂O (90-10-01).](image)

![Fig. 39. Microscopic view of the irradiated area for the measurement described in the previous figure; damages and deposits are visible on the anode strips.](image)
such as those described above, have been detected in this case.

We have reasons to believe that some early observations, by our group and by others, of a reduced sensitivity to pollution-induced ageing processes of strips manufactured in gold, as against chromium, could be in fact a consequence of the very different conductivity of the substrates and current densities used for the measurements, more than the result of a reduction in the polymer formation as suggested by some authors.

7. Discussion of the results and conclusions

The present paper collects and summarizes the results of several years of investigation on the use of micro-strip gas chambers for tracking detectors designed for operation in the LHC environment. We have described in detail the experimental setups and procedures developed to emulate and study the long-term operation under high radiation flux of the detectors, and discussed the most representative results obtained. In view of the complexity and variety of the factors affecting the lifetime of gaseous detectors, and MSGCs in particular, and despite the large number of observations, no general solution to the ageing problem can be proposed, but only a set of rules and caveats that should allow, to the best of our knowledge, to choose the proper construction technology for the components of a detector. Two major processes leading to a degradation of performances in MSGCs, substrate charging up and surface deposition of polymers, have been clearly identified and separated from other sources of degradation (poor quality of the artwork, field emission from edges, micro-discharges etc.). We have demonstrated that in reasonably clean conditions, and with proper choice of gases and manufacturing materials, the ageing component due to polymerization can be avoided up to at least 120 mC cm\(^{-2}\) of collected charge, equivalent to ten years of operation at LHC, regardless from the metal used for the strips. On the other hand, use of high-resistivity boro-silicate glass results in rate-dependent, long term modifications of gain, probably due to local accumulation of charges on the insulating surface between strips and/or slow migration of the majority carriers (sodium ions) in the glass.

Use of bulk or surface-conditioned electron-conducting substrates with surface resistivity around 10\(^{14}\) Ω per square solves all problems of short and long term instabilities observed with detectors made on insulating supports, presumably, even in presence of moderate formation of polymer deposits, the polarization currents maintained by the resistive support largely dominate the definition of the electric field strength and structure in the region of the electrodes, thus obliterating the effect of the layers.

Our interpretation of the results is supported by the measurement shown in Fig. 32: a long-term, low current density ageing run realized in what has been referred in this paper as the “standard” RD-28 laboratory, with a moderately clean gas system. The MSGC used for the measurement had a 100 × 100 mm\(^2\) active area, chromium strips on D-263 boro-silicate glass, coated with a thin (500 Å) diamond layer with surface resistivity of ~10\(^{14}\) Ω per square. In the same setup, an identical uncoated device was shown to age rapidly. This demonstrates unequivocally the predominance, in defining the lifetime characteristics of micro-strip chambers, of the surface conductivity of the support.
Acknowledgements

The authors would like to acknowledge the continuing interest and support for this research of H.-J. Hilke. This work would not have been possible without the material help of many people at CERN, and in particular O. Runolfsdon, A. Braem, M. Jeanrenaud. Fruitful discussions with other members of the RD-28 collaboration have increased our motivations and acted as essential guidelines for the research; in particular, we acknowledge the direct co-operation of the groups at LIP Coimbra (A. Policarpo) and INFN Legnaro (G. Della Mee).

Appendix: Producers and materials mentioned in the text

BERTAN: 121 New South Road, Hicksville, NY 11801, USA.
BRONKHORST HIGH-TECH: Ia Nijverheidsstraat, NL-7621 AK Ruurlo, The Netherlands.
CAEN: 11 Via Vetreria, Viareggio, I-55049, Italy.
CARBAGAS: 103 Rue des Jeunes, CH-1227 Carouge, Switzerland.
DESAG: Deutsche Spezialglas AG, Postfach 2032, D-31074 Grünsten, Germany.
HEWLETT PACKARD AG: 7 Rue du Bois du Lan-C.P. 365, CH-1217 Meyrin, Switzerland.
NUPRO: Arbor AG, 10 Lounstr., CH-5443 Niederrohrdorf, Switzerland.
PHILIPS AG: Dietikon, 12 Riedstrasse, Postfach 360, Germany.
QUALIFLOW: 175 Rue de Caducée, F-34090 Montpellier, France.
SAGANA: 49 Ch. Vert, F-69760 Limonest, CH-8953, Switzerland.
SEMI-GAS SYSTEMS: Univ. of Warwick Science Park, Warwickshire, UK.
SURMET Co., 33 B Street, Burlington, MA 01803, USA.
SCHOTT GLASS TECHNOLOGIES, 400 York Av., PE 18642 Duryea, USA.
SSPC NIES, 25 Smirnowskaya Ul., 10952 Moscow, Russia.
DURALCO 4525 and 4461: Cotronics Corp., 3379 Shore Parkway, NY 11235, USA.
EPO-TEK: Epoxy Technology inc., 14 Fortune Drive, Billerica, MA 01821, USA.
EPOTECNY: 10 Impasse Latécoère, F-78140 Vélizy, France.
ARALIT AW 106 (hardener HV 953 U): CIBA-GEIGY AG, CH-4002 Basel, Switzerland.
STESALIT 4411 W: Stesalit AG, CH-4249 Zullwil SO, Switzerland.
VECTRA C130: Hoechst High Chem; Manufactured by Nief Plastic, 10 R. Jean Rostand, F-06745 Genay, France.
RYTON R4 (polysulfur phenylene): Produced by Phillips Petroleum Co., USA.
PEEK (poly ether ether ketone), EPDM (copolymer ethylene-propylene), PVDF (fluorinated polyvinylidene), VITON (fluorinated copolymer): supplied by Angst Pfister SA, 52-54 Route du Bais des Frères, CH-1219 Le Lignon, Switzerland.

References