direct reactions

grazing collision

~ compound nucleus
. formation

\ deep inelastic collisions
close collisions

ot

elastic scattering

distant collision Coulomb excitation
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PLF — projectile-like fragment
P TLF — target-like fragment




— CM CM
TKE = E*" \inpLe + EXY winiTLr

TKE - total kinetic energy in the exit channel

E\0ss = Ecm- TKE

E, 555 — total kinetic energy loss
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Measured deviations from colinearity for the in plane and out of
plane distributions for all inelastic events in the 40Ar + 58N
reaction at incident energy of 7 MeV/nucleon.
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» the fragment mass and charge distributions are broad and
located close to the mass and charge of the projectile and of

the target nucleus, respectively.

30 MeV F T MeV
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A 1 - J } | 1 i 1 1
32 324 38 38 40 42

Cross section contours
in the N versus Z plane
for the "“Ge+1%°Ho
reaction at four
representative energy
losses. Each bin width is
+5MeV about the
centroid. The dot-dashed
line shows the line of
maximum beta stability.
Solid dot is “Ge.

projectile 8
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» strongly related to the evolution of the proton and neutron

number centroids is the problem of the equilibration of the N/Z
ratio.
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Centroids of the Z, N, and A
distributions and the<N>/<Z>
ratio for PLF's as a function of
energy loss

B  Squares indicate
measured post-
evaporative values

@ Circles give the primary
values reconstructed from
the kinematic coincident
technique

The solid line is the
prediction of the nucleon
exchange transport model
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line of maximum beta
stability

gradient of the

potential energy
surface for the

projectile-target
system

\ N/Z ratio of the composite

system

Evolution of net nucleon exchange as a function of energy loss for
four systems. Measured distributions are indicated by squares,

primary distributions by circles and theoretical predictions by solid
lines.
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and °884Ni ions incident on 238U,

Right scale:

values of the gradient in the
PES at the injection point (+) for
considered systems.
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[ process of dissipation of kinetic energy of the entrance channel
and its redistribution among the various degrees of freedom is of
high significance for understanding of the damped reaction

<E'pp/Erma> (%) <E'pe/Apy> (MeV/n)

S0
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30
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L ' 1 | L] 1 1 4
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100
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The factor Re,, Is defined as:

E;LF AP
_ Etotal
0=
0,5— %
Ao +A;

where Ap and A; are the mass numbers of the projectile and target,
respectively.

RE
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Parameter Rgq, as a function
of energy loss divided by
available excitation energy
above the Coulomb barrier.

The data for the °6Fe + 238 |
*°Fe + 165Ho, and "“Ge +
165Ho systems are
presented.

The solid line is the prediction of
the nucleon exchange transport
model and the dashed line is
based on the random neck
rupture model .
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= some studies have also indicated that the partition of excitation energy is
dependent on the net nucleon exchange .

PLF

TLF
ApLr = Apt AA
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The dependence between the E “;,  and the primary A, - was
approximated by a linear function:

E" pLr=C + RE “roraL (Apte -Ag)

where C and R are E, oo dependent parameters.
The Ay ¢ is the true primary mass and A, is the

centroid of the primary mass distribution at a
given E 5ss.
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Model description

For the relative distance r the de Broglie wavelength is given by:

1o 2 v ()

V(r) is the interaction potential, is the reduced mass and ECM is the
energy of the system.

A more precise condition for classical behavior is given
by:

| grad A(F(t)) | ((1
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a)

Wilczynski plot:
(a) an energy versus scattering angle plot

(b) the figure illustrate the
corresponding trajectories leading to
the energy-angle correlation of part (a).
The impact parameter is denoted by b.
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A simple models include the transfer of charge and
mass assuming that:

= equations of motion in the entrance channel are
Integrated until the point of closest approach;

» transfer of neutrons and protons takes place only at
R..i,- At this point the relative velocity is corrected for
the mass transfer effect;

* In the exit channel equations of motion are solved
using a potential of the outgoing system.

20



Model of Btocki:

r . /I=I1+I2; A:Rl_Rz.
R+R, R,+R, R+R,

p:

where: p distance, A neck, and asymmetry A variable.

spherel: y*= R’-z°

R, neck : y°=a+bz+cz’

WA

sphere2: y*=R;—(z-r)’

21
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Fig. 1.4: The family of nuclear shapes for fixed asvmmetry parameter A = 0.3

as a function of the distance variable p and the neck variable A
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d o o __ 0,
_dtaq| aqi_ 8ql

where L =T -V Is the Lagrangian and F is the
Rayleigh dissipation function. The kinetic energy is
given as:

1 1.
T=— ZM|Jq qj rela)rel+2| COZ
| j=1

where g ;= ( p; 4, 4) is the set of shape parameters and rotation of
the system is described with two spheres rotating with angular
velocities w; and @, and the whole system rotating with angular
velocity w . M; Is @ mass tensor calculated in the Werner-Wheeler
approximation to irrotational ow. |, and |, are inertias of two spheres
taken as rigid bodies and IS the inertia

I tot

of the relative rotation. et =1 rigiaboay= 11 = 12 23



In the more fundamental approach the nuclear part of the
potential is calculated according to a double folding
procedure developed by Krappe:

gl eJent e
Where:

o=|F-F C, =a (1-«, 1?)

and parameters ry, a, a,, and x s are taken from the fit done
by Krappe.
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Energy dissipation is given by:

/ .dG ®
( s .o * e ]
dE . i 2 '\_\:: ° g ® .o ® ,,/,
— — IOU § d G(n — D) Nose ® AT
dt wall 5
Fizyka

where p is the mass density of the nucleus, U is the mean
speed of nucleons in the nucleus, and n IS the normal
velocity of an element do of the nuclear surface. The

guantity D is the overall drift velocity of the gas of
nucleons.

25



((il—Ej =po §da(h—D1)2+pU § da(n—D2)2+
wall+window S,

1 16 pv
2 S,
+=po(2ui+u’)S_+=— 5 S

: V..

w

2F =f (dija”+(l f)(dEj
dt dt wall+window

with a form factor f going to 1 for sphere
or spheroid like shapes and going to O at
scission.
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(a) Typical trajectories for
the 12C + 40Ca reaction.

(b) For L = 427 and L = 53 the
numbers written along the
trajectories specify the asymmetry
parameterA , the collision time 7 (in
units of 10-%? sec) , the number of
revolutions of the system n,, and the
maximum relative difference
between @, @,, @ .
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The Fokker - Planck transport equation:

{;{ +q4V, (VqU)VC'I}P(q, q,t):—za%i[ui (q,9)P]+

_|_
Zﬁq.ﬁclJ

Here U is a potential, v; and D ; are drift and diusion coecients,
respectively. The left hand side describes the change of the probability
distribution P due to the velocity q and the force -VqU.

O _9F

oq, o

In the model proposed by Randrup the set of macroscopic
variables is:

{Cli }: {r’ 0,00, Cr 6,2 Pore s Lpes ToLr ’TTLF}

28
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Dinuclear shape coordinates assumed in the dynamical calculations
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The Fokker-Plank equation reduces to:

0 0 ok 0°
dtP( L, )= N _a—ZUZ-I_WDNN—l_ﬁDZZ P(N’Z’t)

where v and D are drift and difusion coefficients, respectively.
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